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SECTION I 

INTRODUCTION 

The feasibility of using the summed output of a ring of regu- 

larly-spaced radially-oriented horizontal seismometers for estimating the 

output of a vertical seismometer located at the center of the ring was dis- 

cussed in (Potter-Roden,   1965)* for an assumed noise model consisting of 

isotropic single-mode Rayleigh waves.    The results of that preliminary 

study were encouraging enough to justify a deeper iavestigation of the theo- 

retical noise-reduction capabilities 01 planar seismic arrays containing 

both horizontal and vertical instruments.    In the present report we wish 

to consider the general problem of trying to use several concentric rings 

of horizontals to estimate the average output of a ring of verticals (concen- 

tric with the horizontal rings) in an isotropic noise field which may contain 

more than one mode.    The present problem reduces to that considered in 

P-R if   I) there is only one horizontal ring,  2) the vertical ring has radius 0 

and contains only one seismometer,  and 3) there is only one significant 

noise mode. 

The underlying motivation remainb the same: the enhancement 

of a vertical or near-vertical P-wave.    In the problem of trying to detect 

teleseiamic events,  and also in much oil exploration work,  the "signal" is 

a vertical P-wave which may be deeply buried in surface wave noise.    Let 

v(t) be the average output,  due to surface wave noise, of a ring of vertical 

seismometers,  and let h.(t),   . . . ,  h   (t) be the average outputs,  due to 

surface wave noise,  of N rings of horizontal seismometers.    The functions 

v(t) and h (t) will always be assumed to be stationary time series.    Since 

there is usually a degree of statistical coupling between horizontal and 

vertical components of surface wave noise,  it is reasonable to try to design 

* 
Hereafter referred to as P-R 



filtere g (t) to apply to h    BO as to make the autopower spectrum of 

e(t) = v(t) - (gj® hjHt) - ...  - {gN® hN) (t) (1.1) 

as small as possible.    On the other hand,  since a vertical P-wave has no 

horizontal component, a processor of the type described by (1. 1) will effect 

no distortion of the P-wave signal. 

In this report we shall restrict our attention to processors 

of the type (1. 1).    For any such processor, we define the interpolation 

error   to be 

I.E.    =   E(f)/V(f) (1.2) 

OL 
where 

E    a   autopower spectrum of e(t) 

V    =   autopower spectrum of v(t) 

i 

If S = crosspower spectrum between h   and v and C  .- crosspower spectrum 
between h   and h,, 3 

n J 

E 
N 

E 
n=l 

N N     N 
= v -y; G* s -y; G s*   +F VG* C .G.   (1.3) ^-J     n       n      £-0     nn Z_s   Zj    n      njj       »••"' 

n=l   j=l n=l 

where Gn = Fourier transform of g  .  The interpolation error is minimized if 

the frequency-domain filters G   are chosen so as to satisfy the matrix equation 

Cll C12 *  *  *  C 
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Filtere G^ satisfying (1.4) are called optimum interpolation filters,   and for 

such a set of filters the interpolation error (1.2) becomes 

N 
I.E.    =   1-(1/V)2   GnSn* H.S) 

nsl 

(Minimum interpolation error) 

All arrays considered in this report will have in common that 

the seismometers are deployed in concentric rings of regularly-spaced 

vertical or radially-oriented horizontal components.    The restriction to this 

type of geometry has been based upon several considerations.    First, the 

mathematical description of array response can be made more concise and 

understandable if the radial symmetry of the assumed noise field is com- 

plemented by corresponding symmetries in the array geometry; the optimum 

interpolation filters to be applied to the seismometers in a given ring are 

equal (or nearly so) for the arrays and noise fields which we shall study, 

and hence, we are justified in treating the average output of all seismometers 

in a ring as a single channel.  Thus,  if there arc two rings of horizontals 

each containing six seismometers, we design only two filters, not twelve. 

Another consideration is that a ring average of regularly-spaced vertical or 

radially-oriented horizontal seismometers is fairly insensitive to directional 

characteristics of the noise field,  provided the separation between seis- 

mometers is not large compared to wavelength; hence, although we assume 

isotropy throughout this investigation,  the answers would be almost the 

same even if the noise field were assumed to be nearly unidirectional. 

The use of rings of verticals rather than a single central 

vertical has a special purpose: a vertical ring average has a low response 

for certain wavelengths.    This property can be used to overcome one of 

the serious problems connected with horizontal-vertical interpolation, 

namely that for higher modes there exist frequencies at which the hori- 

zontal motion vanishes, making interpolation of the vertical component 

impossible at those frequencies. 
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The first step in our investigation, the derivation of formulas 

for numerical calculation of ring crosspower spectra and optimum inter- 

polation filters for a given array geometry and multimode surface wave 

noise field,  is carried out in Section II.    These same quantities may be 

expressed by means of different formulas, which are less useful for numerical 

calculation,  but more interesting from the theoretical point of view because 

they give some insight into the difficult question of designing an array geo- 

metry to suit a particular noise field.    These formulas are derived and 

discussed in Section III.    Section IV describes and discusses a means for 

graphically representing the response of a given horizontal-vertical inter^ 

polalion array to surface wave noise having arbitrary dispersion and hori- 

zontal-vertical coupling.    Attention is also directed to the question of how 

the array responds to incident P-waves whose apparent angle of emergence 

is not quite vertical.    Finally,  in Section V, we present the results of 

numerical calculation of array response for several given array geometries 

and noise fields. 



SECTION II 

MULTIMODE RING CROSSPOWER SPECTRA AND 

OPTIMUM INTERPOLATION FILTERS 

A.    CROSSPOWER SPECTRUM FOR TWO SEISMOMETERS 

Let O be the origin of polar coordinate system in the plane 

of the earth's surface.    The position of a point P is specified by giving 

its polai coordinates (r, p). 

At a given point Pj = (r., p ) suppose we have a vertical 

seismometer v., and a horizontal seismometer h. which is radially 

oriented, Le., the orientation angle of h. is p  .    At the point 

P2=^r2' P2^ ^et U8 be 8ivön a second pair of seismometers v   and h , 

where v^ = vertical, h2 = radially-oriented horizontal. 

X 
r^  / 

O 

Now suppose, as in P-R,  section 9, that we have an 

Isotropie single-mode Rayleigh wave noise field,  where the energy 
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propagates across the plane in pla .e waves and is uncorrelated from 

direction to direction.    Let 

^(f)     =   inline horizontal autopower spectrum 

K{£)     =   inline horizontal-vertical transfer function 

k(f)     =   wavenumber (cycles per unit distance) 

We wish to obtain simple expressions for V = crosspower 

spectrum between v   and v     S = crosspower spectrum between h, and v . 

and C = crosspower spectrum between h. and h . 

It may be shown (cf,, P-JR,  section 9) that 

.TT (2.1) 

V=|K|2..i 
-TT 

.TT 

S  = -K$ 

/     expfiu2cos [e-pj - iujcos   [9-pJJ do 

—J    coslö-p^exp^cos [e-p2]-iu1cos  [Ö-pJ JdS 

1     / / C=*''2^~J   cosfe-p^cosCe-p^expf iu2cos  [e-p2J-lUjCos [S-p ] Wo 

where Uj = Zflkr^ u2 = 2TTkr2.   It is now useful to observe if we define 

F(u1#u2) =   ^-J    expKu2cos   [G-pJ - i^cos [S-Pj]  jdB 

(2.2) 

-TT 

then formulas (2- 1) become 

V = K 
2 

$ '   ^(Uj,^) 

S = -iK$ 
8F<ur«2| 

c = $  . 
a2F(uru2) 

au2 auj 

6 
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In order to obtain more convenient expressions for the 

crosspowor spectra we note that 
■ 

u2cos{9-p2) -u1cos(9-P1) =u-cos(8-p) where 

u and p are defined by 

(    Z   .       2 -, r n\i u = ^Uj   + u2    - 2u1u?cos [PJ-DJ/    and 

u cosp = u2cosP2- Ujcospj,  u sinp = vusinp, - u.sinp. 

Hence 

n 

F(ulfu2) =-^T-/    expfiu cos [8-p]jd0 

-TT 

2n J 

TT 

exp(iu cos9)d9 

TT 

/TT 

cos(u cos9) d9 

-IT 

The last expression is a form of Poisson's integral and is equal to 

JQ(U)I where JQ is the zero-th order Bessel function of the first kind 

(Watson, p. 47).    Therefore, 

Ffu^u^ = J0(u) (2.3) 

where ^ =( Uj   + u^' - 2u u2cos [p  -p   ] |* 



Substitution of (2. 3) into the first formula of (2. 2) yields 

V» |K|   §J0(u) (2.4) 

In order to get the corresponding expressions for S and C we have to 

operate on (2. 3) by taking the partial derivatives indicated in (2. 2). 

Using the standard Bessel function identities 

(2.5) 

J „ W   =(-l)nJ (x) -n n (Webster, p.  322) 

we find 

hi -vo8(prP2) \ 
= - \ j • JjN 

= -|(uru2cos[pi-P2])(j0[u]+ J2  [u]) 

and 

9u?5u 

Ji(u)- — T^- JiN au^uj   "r"'  hal au2 "i 

(2.6) 

(2.7) 

; :;-■-«-■■.;■;,  ■ ,■.■ ,• vvv- 
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I 

=  -  IU 
o u 
au

2
aul u 

ilL   i!L    T'/ x 

= -* 
Ul^-foW^,(ü|   -ifH-lH-^.]^^ 

A
2 

o u 

= -* J2(u) ^f^^-ftw-^ 
* cos{prPz)Jo(u).i (u^co8[ p1.p2] + U2C08  [pi.p2j _2xi^ 

J2(u) 

u 

J?(u) . 
It may be verified from (2. 5) that -^    =   ±   j lc) + 1   T   M   *     l    r    , * 

u .      w 6     2 

Hence we may now collect our results in the equations 

v= |K|2$JO(U) 

24     4 

(2.8) 

C = $ 4co8(prp2)j0(u) -   ^ufcos [p1-p2] + u2cos(pi.P2]-2u1u2\ 

where u = (u*   + u^ - 2u1u2cos [PrP2j)*    It may be shown that the 

formulas (2. 8) reduce to the formulas 10. 13 and 10. 14 in P-R for the 

special case when u. = u_. 
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B.    SINGLE-MODE CROSSPOWER SPEC TRUM FOR TWO RINGS OF 
SEISMOMETERS 

We shall now compute the crosspower spectrum W for two 

concentric rings of regularly spaced seismometers.    Thus let r^, r-, 0,^, 

a„ be real numbers, r.  * 0, r    * 0, and let N. and N    be positive integers, 2 I £ i e. 
Let 

Sjft) =(: (l/N^/a^t) +  ... + aN (t)\    and 

s2(t) = (1/N2) (b^t) +  .. . + bN   (t)J    where 

a    (t) is the output of a seismometer at the location fr., rrr— + a j)  and 

b (t) is the output of a seismometer at the location Ir  , TT   + «^ j .    It 

is assumed that either all the a    's are vertical seismometers or they are 
m 

all radially-oriented horizontals, and similarly for the t> 's.    Thus s (t) 

is the average output of a ring of N, regularly spaced seismometers at 

distance r. from the origin, with the ring having a rotation angle Ot , 

j = 1,  2.    (Figure 2.'l). 

We wish to compute W, the crosspower spectrum between 

If $ = the crosspower spectrum between a     and b , then s. and 3?. mn m 

W 
12 

Ni    N
2 

mn 
m=l n=l 

(2.9) 

10 ■ 
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Figure 2. 1.    Schematic Diagram of Ring Array 

Consider first the case when all the a    's and b 's are 
m n 

vertical seismometers.    Then we have by (2. 8) that the crosspower 

spectrum is 

Nj       N„ 

1   2 m=l   n=l 
(2.10) 

11 
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e 

(crosBpower spec rum for two vertical riig averages) 

Where Umn * (ul + u2 " 2ttlu2C08 W   * Ul = 2lTkrl' u2 = 2Trkr2' 

and    cj) 2TTm 
mn N 

1 

2nn 
+ ai-a2 

Similarly, if the a    's are horizontals while the b 

verticals, we get from (2. 8) that 

iK$ 

m 
i 

n s are 

Nl       N2 

W = S 
(2.11) iK$ 1 ^=-*   ^S       / v 

1.2=   2 N^    ZJ   2L,      (VVofl*innl 
m=l   n=l ' 

1 
•(J0[Vn]   +J2   lUmnj| 

(crosspower spectrtim for a horizontal ring average and a vertical ring 

average). 

;/?   - "^ :■ 

Finally, if all the a^^'s and b 's are horizontals, we get 

Nl       N2 
(2. 12) 

W = C      = $ 
1,2 N 

1       d.       —,_!       „_1 I 
COS 

m=l   n=l 
mn   0 i mn J 

-(V08*mn + U22 C^m„   -2-l"2) (iS J0 [Vn]   +iT J2 lUmn] 

+ l8J4[Umn| 

(crosspower spectrum for two horizontal ring averages). 

. 

12 
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C.    MULTIMODE CROSSPOWER SPECTRA 

We shall now derive the array crosspower formulas for 

multimode noise.    We suppose that the noise field has P modes, and 
th 

that for the p     mode, 

i   (f) = inline horizontal autopower spectrum 
p 

K  (f) = inline horizontal-vertical transfer function 
P A 

k (f) r wavenumber (cycles per unit distance), 

for p = 1,2,  .. . ,p.    We assume that any two modes are uncorrelated 

and that the energy from each mode is isotropic,  uncorrelated from 

direction-to-direction, and propagates in plane waves across the half 

space.    Our array consists of M rings of vertical seismometers and 

N rings of radially-oriented horizontal seismometers.    In the mth 

vertical ring we have Am seismometers, located at the points whose 

polar coordinates are (d 2TTS 
+ am^*  8 = ^' ^» • - • »A    ;   the average m' A

m «I'  -m' 
output of the Am seismometers in the m"1 vertical ring is denoted by 

vm.    In the n     horizontal ring we have B^ horizontal seismometers, 
2TTB 

located at the points (r  , •—■-  +   R i    s - 1   7 n  •   «-u« ^ l*n* B      
T   pn''  

s - *»^f».B,;   the average output 
n 

th 
of the Bn seismometers in   the n     horizontal ring is denoted by h .    The 

numbers dm and am are.  respectively, the radius and the rotation angle of 

them     vertical ring, m =1,2,...,M;   similarly, r    and 8   are 

respectively the radius and rotation angle of the nth horizontal ring, 

n = 1,2,   . . . ,  N. 

In this report the symbol "p" appearing as a superscript is merely an 
index   and is not an exponent.    Any other superscripted symbol denotes an 
exponent. 

13 
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Then according to (2. 10) and our assumption that there 

is no correlation between modes, we find that the crosspower spectrum 
Vmn between v

m and v   is given by 

mn     A 

A_    A 

m   « P=l    s=l   t=l \      / 

(multimode vertical ring average crosspower spectrum^ 

where up = 2nkF(d2  +   d 2 - 2d   d   coscp   )* and 
81 m n m n        ^st 

(2.13) 

^st =   A 
2n8 2TTt 

m n 

a    - a   . 
m       n 

If m = n, (2. 13) reduces to a slightly simpler formula for 

the vertical ring autopower spectrum V     = V       : 

(2. 14) 
m mm 

p A
m 

m    A 
m      p ZE 

P=i   s=l 
KP|2   fPJrt/4nkP.d opVW^l) 

(multimode vertical ring average autopower spectrum). 

Similarly, the crosspower spectrum S       between the 
th nm 

average hn of the n     horizontal ring and the average v     of the mth 

m 
vertical ring is obtained from (2. 11): 

m      u ^p - m       n 

nm ~ A     B     2Li     Z*/    2L/ 
m    n   psl     8=1    t=l 

(2.15) 

Znfc* 

/ 

(multimode crosspower between horizontal and vertical rinp averapr«.«) 

14 
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.                       2ns 2n t where   cp^  . _, 
m n 

+    a    - s m       n 

(< 
u8t

P= 2nkPfr_2    +   d__2   -   2r   d     cos-  ^ 
m n   m ^ 

Finally we obtain from (2.12) the formula for the crosspower 

spectrum C     between the horizontal ring averages h   and h : 
nj n j 

P      Bn    Bj 

^r-rk- E ET.  »p •{»"•*.»'o M 
n  j       p=l    8=1  t^l «. \      / 

+  (2n kPj2 | z^ r.   -(r/   + r.2)   cos^j 

(multimode crosspower between two horizontal ring averages) 

-    2TT8     -      2TTt 

(2. 16) 

where   cp     = zrim'    "   —'■-^-     + Ö    -   S 
^st      B B. pn       Pj 

J n 

and     u   .P   =   2TTkP  (r        +  r.    - 2 r     r    coscp    \ 
Bt \  n j n     j ^st/ 

h 

D.    MULTICHANNEL INTERPOLATION FILTERS AND INTERPOLATION 
ERROR 

For each m =1,2,... .M, we wish to design a set of 

optimum interpolation filters G,       G-    ,  .... G 
1m,     Zm Nm   to be used in 

estimating v    from h., h,,  ... .h.. in multimode noise (i. e., G,     is the m i      ^ N jm 

15 
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I 
I frequency flit« to be applied to h  to e.timate v   , j.l, 2 N). 

According to (1.4),. the optimum interpolation filters 
Gjm dre übtained by 8oi^ring the matrix equation 

(   njj I   jm) =(S
nm) (2.17) 

where C^ and S^  are given by (2.15) and (2. 16).   It i, intereeting to 

note bere .bat if all of the modal bori.ontal-vertical transfer (nncKon, 

K   all are purely imaginary at all 1 requenoie. (wbich is the ease for 

the „eoal tbeoretioal model of a layered half-space  [Laster«le.  1,66)) 

'hen by ,2. 15) and ,2. 16). (c,., and (S^) are real matrices, and bence 
the filters G      are real also. 

Once the optimum interpolation filters G      have been 

computed, the optimum interpolation error for vm is givl by (1. 5) as 

N 
(I.E.)       =    1 

m ■K)i^ s. * 
jm   jm 

(2.18) 

' 
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SECTION III 

ALTERNATIVE CROSSPOWER FORMULAS 

If we assume a certain noise field and specify an array 

geometry,  then by use of formulas (2. 14-2. 16) we may calculate the 

array crosspower spectra on an electronic computer to any desired 

degree of precision; these results may in turn be used to calculate the 

interpolation filters and interpolation error (formulas 2. 17,   2.18). 

However,  although formulas (2. 14 - 2, 16) are suitable for numerical 

calculation,  they are exceedingly inelegant,  and because of their 

complexity they can not give insight into how the array "works. "   How 

many rings should we have in our array?   How does the response of a 

ring change if we double or triple the number of seismometers in the 

ring?    What is the effect of varying the rotation angles a     and ß 

of the vertical and horizontal rings respectively?   For a theoretical,  i.e., 

non-computational,   study of questions such as these, formulas (2.14-2.16) 

are no help.   It is of interest,  therefore,  to derive alternative expressions 

for the array crosspower spectra which do give insight into the functioning 

of the array. 

A.   PRELIMINARIES 

The principal tool in the derivation of our alternative 

crosspower expressions will be Neumann's formula (Watson, p.  358) 

J /f    2       2 *\        V"1 i3-l) 

(lx    +y      .2xycoscpj^=    ^      e    J    (x) J    (y)  cos q^ 
v / q = 0        ^    q 4 

where 

e 
q 

- f i. q = o 
12,   q> o 

17 

  



The series on the right is absolutely convergent for ail real x, y, and Cp- 

The convergence is uniform in x and y if x and y are restricted to lie in 

any finite interval.    Hence one may differentiate the series term by term 

with respect x or y. 

We shall also need two definitions from elementary number 

theory.    (1)   An integer q is a multiple of the integer N if and only if 

there exists an integer m such than mN = q.    Thus, for example, zero is 

ix multiple of all integers.   6 is a multiple of 2,   7 is not a multiple of 3. 

(2) Let Nj and N^ be positive integers.    The least common rmiltiple of 

Nj and N2 is the smallest positive integer N such that. N is a multiple of 

both Nj and ISL-    Thus, the least common multiple of 3 and 7 is 21,  the 

least common multiple of 6 and 8 is 24, and the least common multiple 

of 5 and 10 is 10. 

Finally, we need to know the following fact:   let q and N 

be integers, with N ^ 1,  aad let 6be any real number.    Then 

t   cos(qBr +6J) pi 
(3.2) 

N cos q 6 , if q is a multiple of N 
0 , if q is not a multiple of N 

_   j   N cos q 6 , if q = 0,   ±N,   ±2N,   ±3N, 

0 , if otherwise., 

B.   INFINITE SERIES FORMULAS FOR CROSSPOWER SPECTRA 

1    Let v   and v   be ^he-averages of two concentric rings of 
th 

regularly spaced vertical seismometers; in the j     ring,  let N.   = number 
J 

of seismometers,  r- "radius,  a-  = rotation angle, j  =1,2.    Then in a 

single mode noise field   ({,  K,  k),  the crosspo^er spectrum VJT between 

Vj and v, is (2.10) 
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(3.3} 

12 
K|2$ 

1    Z      m=l 

Nl        Jh 
S,       Zrf       J0 ([ul   +   u2   - 2ul u2 cos ^mn]      )    • 
m=l       n=l J     ' 

where 

u     =   2X110:,.   a,   =   2TTkr,   .    cp       = ^^  -  l^i + a       a 1 l      * 2        Tmn      N, N^ 1        2. 

Hence,  according to Neumann's formula (3. 1) we have 

KT $ 
12   '      N, N. 

1    2 m-i       11=1       q=0 

reversing the order of summation, 

i2, 

Nl       -^2        C0 

EV^     V^    en J,, (uj) J   (u-,)  cos qcp 
/ .    ^^    q  q    *    q   ^ mn 

or. 

2 
Nl        Ü 

12 q=0   '    ^    ^ ^ m=l        ^ 

(3.4) 

cos q cp 
mn 

The inner double summation may be simplified with the aid of   (3.2). 

Summing first on n,  we see that 

N, N N,      No 

5T        S cosqcp =       7 > ---/-fZlLm 2TTn 
m=l        n= mn cos 

m=l     n=] 

/   r2TTm 2TTn Tv 
iqL"^r ■x+ai-a2j) 

is equal to 0 unless q is a multiple of N2,  by (3.2).    On the other hand,  if we 

reverse the order of summation we see that the same sum is equal to 0 

unless q is also a multiple of N..    Thus we see that tne inner double summa- 

tion in (3. 4)   is   0 unless q is a multiple both of N   and N ,  i.e.,  unless 

q is a multiple of N, where N = the least common multiple of N   and N  . 

So,   suppose that q i8_ a multiple of N.    Then,  using (3.2) twice, we get 

19 
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Nl N
2 

E      C08(M-^   --^^1   ■*z\) (3.5, 
m=l    n^l 

=   N1 N2 cos (q (aj - a2]) 

Hence,   (3.4) becomes 

CO 

Vli2     =|K|    »V     VqN'VVVH^C«,-*.]).    « 
(3.6) 

+ 2  |K| % £    JqN(UlJ   J^^, C08 ^qN ^ ^ j 

(single-mode crosspower spectrum between two vertical ring averages) 

where 

u.     =   Zirkr. 
J i 

r.     =   radius, 
J 

a.     =   rotation angle for the j     ring 

N     =   least common multiple of N   and N 

j       =   1, 2 

Now,  let h1 and h2  be the averages of two concentric rings 

of radially-oriented horizontals, where u .  r.,  a. N..  and N are the same 

as above.    We wish to derive expressions for S^ 2 = crosspower between h 

and v2, and C^ = crosspower betweenhj andh2. In view of equations (2.2), 

(2.3), and (3. 1). we see thatS^ 2and C^ 2canbe obtainedfrom (3. 6)a8follow8: 
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I 

i 

SI,2   =   -iK§T 

C        =   » • —^  
1,2 hi7hv 

q=0 

^    f  Z      W (ui,JqN ^  C08[qN (al ~a2,]) 

S   eqNJqN(Ul)JqN(U2,COS[qN(ai-a2)]    / 
a = 0 J   / 

S. 

I We may carry out the indicated differentiations term by term, to obtain 

(3. 7) 

\2   =    ^"W J0 ^  - ZiK* Z^  JqN   (u^ JqN(u2) cos^qN ^-O^j 

(single-mode crosspower spectrum between horizontal and vertical 

ring averages) 

CO 

Clj2   =   "1(u1)J1(u2)+2$Z;j;N(u1)rN(u2)cos(qN[a1-a2]) 

(single-mode crosspower spectrum between two horizontal ring avera^. 

We could rewrite (3.7) and (3.8) by substituting the identity 

Let us express formulas (3. 6-3. 8) in the form 

JqN 

Vli2   =   iKl^'J^Uj)^^)   +   e^N.Uj.u^ 

^1,2    =   lK*J1<tt
1)

Jotu
2) + e2(N'ui'u2)     and 

C1.2   "   fJl(Wu2J   f  e3(^tti'^) 

(3.9) 
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where 

I 

E 
E 
D 

c 

1 ei(N'Vu2):s 2iKr»iL V^^ V^z1 cos[qN(ar^,J' etc• 

The fact that (3. 1) in absolutely convergeat implies that 

(3. 10) 

for any fixed values of u   and u    »e. have 
JL Ct 

lim e^ (N.Uj,^)   =   0, j   =   1,  2,  3. 

N-K» 

Since N is the least common multiple of N   and N ,  the numbers of 

seismometers in our two rings,   (3. 10) shows that if we hold the radii 

of our rings constant and let Nj and N2 increase to infinity,  then the 

crosspower spectra (3. 9) approach the limiting values 

2 (3*ll, 

vi.2 = iKl «'VW^ 

si.2 - iK«WW 

That is,   (3.11) gives the crosspower spectra chat would be obtained by 

using "circular seismometers   " whose outputs are respectively the average 

integrated motion of all points in continuous rings with respective radii r 

and r2.    It is unfortunate that such instruments do not exist,  because, 

they would be the ideal instruments f employ in horizontal-vertical 

interpolation processing. 

In fact,  perfect interpolation would be possible if circular 

seismometers could be need.    For,   suppose our Isotropie noise field 

contains P non-zero modes with modal parameters * ,  K ,  and k 
p      p p' 

p = 1.  2, .... P, (see section 2C),  and our array consists of one circular 
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vertical seiamometer v with radius d, and P circular horizontal 

seismometers hi with radii r^    n= 1, 2 P.    We shall show that h., 

h2l..., and h   can be used to predict v with zero interpolation error. 

Following our usual notation,  let V   = autopower spectrum of v,  S     = 
n 

crosspower spectrum between h   and v,  and C       = crosspower spectrum 
n aj r r 

between h   andh..    From (3. 11) we find 
" J 

v ~~i, ,KP'2VO<2TTV,Z 

p=l 
p 

(3.12) 

p=l 
iKp«pJ1(2nkprn)J0(2nkd) 

P 

c . = 

Define the matrices $ and A   =   (A    )   bv 
pn      J 

i =  diag (i^  $2, ....»p)  and 

A       =1, (2TTk r ), 
pn 1 P n" 

and define the column vector K by 

Then the matrix C   =   (C    ),  the column vector S   =   (S ), and the 1 x 1 
"J n 

matrix V satisfy 

(3.13) 
C   =   A iA 

S   =   iAtiK 

V   =   (K*) t $ K. 
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Now, the optimum interpolation filters Gj. ... ,G are found by solving 

the equation CG = S (eq. 1. 4) for G. where G is the column vector (G ). 

But by virtue of (3. 13) this equation becomes P 

A   « AG = iA1 $ K (3. 14) 

Assuming the matrix A to be nonsingular, we can solve the equation 
AG = iK to obtain 

G = iA-1!* 
(3.15) 

and this solution is automatically a solution of (3. 14).    (Note that this 

solution is independent of *. Le, , the optimum interpolation filters do 

not depend upon the autopower spectra of the various modes for the case 

of circular seismometers.)   The interpolation error is given by 

I. E.  =   1 J. ^     - G.   S. (eq.   1.5) 
(3.16) 

Now, regarding 1 x 1 matrices as numbers, we note that 

2 G.S. *  =   (S*)^ 
j=l 
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Hence 

P.E. = 1 - (l/VH[S*]fcG) 

= 1 - (l/VM-vlK*]' fA'iA^K), by (3. 13 and 3.15) 

= i _   (Kii,)t $K     =   0 

(K*)1 «K 

Thus,  in a noise field with P modes,  it is possible to achieve perfect 

eotimation of a circular vertical seismometer by employing P circular 

horizontal seismometers. 

On the other hand, a close look at the equations of the 

preceding paragraph will show that if we had tried to estimate v by using 
fewer than P circular horizontal seismometers, we should have obtained 

rather poor results in general.    That is,  one needs at least P circular 

horizontals to handle P modes of noise.    It is clear that this same rule 

of thumb must apply in the case of the finite arrays which are the object 

of this study,  since a circular seismometer is the ideal limiting case of 

a ring containing finitely many seismometers.    Thus, the most obvious 

but perhaps the most important design criterion for horizontal-vertical 

interpolation arrays is 

Number of horizontal rings ^ number of noise modes.      (3. 17) 

We have seen (eq. 3. 10) that as we let the number of 

seismometers in each ring approach infinity, the response jf an array 

of rings of seismometers approximates the response of an array of circular 
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seismometers.    But finite rings approximate circular seismometers 

in another sense as well, for it may be shown that 

e    (N.u.uJ (3.18) 
lim i 1    z =0,   for N s 1 

ul'u2-*0   IKISJ^U^JQ^) 

e(N.u,u) 
Ixm _f I     z a   0,   for N > 2 

u     u   -»0   iK f J (u )J0(u ) 

and 

e    (N, u-.u,) 
lim        -J. i z = 0, for N > 2. 

U1'U2-0   « Jj (up Jj (u2) 
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These equations together with {3. 9) show that the crosspower spectra for 

finite rings approximate the crosspower spectra for circular seismometers 

if the u   - Zirkr   are small (and the number of seismometers in each hori- 

zontal ring is greater than 2).    Thus,  suppose we have a fixed finite ring 

array with each horizontal ring containing at least 3 seismometers and 

suppose that the number of horizontal rings is greater than or equal to the 

number of noise modes present.    Then the optimum interpolation error 

approaches zero as the maximum wavenumber 

max 
l^psP (v«) 

approaches zero.     Conversely it can be shown that the optimum inter- 

polation error approaches 1 as 

mm 
lupsP M 

gets very large. 

We shall now discuss some further consequences of equations 

(3.6) - (3.8).    For convenience,  let 

(Nj, rlt a1)x(N2, r^ aj 

denote the crosspower between two rings, where for the j     ring, 

N.   =   number of seismometers 
J 

T'   =   radius 

a.   =   rotation angle 

j     =   1, 2 
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Then (3. 6) - (3. 8) show that 

(3.19) 

W1,rl,a.1)x{N2.v2.az) = {U,rl.a1)*{K,Tz,0L2)*{N2,Tl,a1)*{Nl,r2,az) 

where 

N   a   least common multiple of N. and N_ 
1 Z 

Thus, for example, the crosspower spectrum between a 6-element ring and 

a 7-element ring is the same as the crosspower spectrum between two 

42-element rings.    Since a 42-element ring is a closer approximation to the 

ideal case of a circular seismometer than is either a 6-element ring or a 

7-element ring, we have evidence that is very suggestive of a possible 

advantage to not having the same number of seismometers in all rings of tie 

array.    There may also be an advantage in varying the rotation angles a 

from ring to ring.    For example,  in the case of 6- and 7-element horizontal 

rings, we have 

(a) 
(6,r1.0)x(7,r2,0)=  §. j^ü^j| (ü^) 

+      2$'{J42<VJ;2(V + J84<VJ84<V+--} 
whereas 

(b) 
(6.r1,0)x(7,r2,~)   =   $. J^) ^ (^ 

+ 2#    {-J84<U1>J84<U2>+ Jl'68^j;68(u2^---} 

In (b) we have obtained a much better approximation to the cronspower 

between two circular seismometers than in (a). 

28 



..U..„,,    [1-H--1,'    VCr    -n.    , --,.;-■.,...     ....   ■     ^JKiailMB^.  ) ^^a 

However, the question of exactly how much advantage, if any, 

there is to varying the number of seiamometers and rotation angles from 

ring to ring is very difficult to attack from a purely theoretical point of view. 

An equally difficult problem is that of optimizing the choice of the ring radii 

once the number of rings has been decided upon.    Unfortunately it seems at 

the present time that the best way of investigating these problems is to make 

numerical calculations of interpolation error for various assumed noise 

models and array geometries, and arrive at array geometries suitable for 

a given noise model through trial and error.   Sect'OnV gives an account of 

the first steps that have been taken in such a program. 
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SECTION IV 

ARRAY RESPONSE FOR A GIVEN SET OF 

INTERPOLATION FILTERS 

A.    INTERPOLATION ERROR FOR AN ARBITRARY NOISE MODE 

Until now we have been concerned with the problem of 

designing filters to minimize the interpolation error for a given multimode 

noise field.    Let us now take a slightly different point of view.    Suppose 

we have an array consisting of a ring v of verticals and N rings h , h  

hN of horizontals, and suppose we hive already designed a stt of filters 

Gj, G2,.. . »Gj^.    What is the response of the given «Sir -ay (with the given 

set of filters) to an arbitrary noise mode with modal parameters §, K, 

and k?   While the filters G   may be optimum interpolation filters for 

some particular multimode noise field,  we ask how well the array will 

perform in noise for which the filters may not be optimum. 

For the noise mode {$,K,k) the output e(t) of the interpolation 

processor is given by (1.1).   As before,  let E = autopower of e,  V = auto-   " 

power of v, S    = crosspower between h   and v, and C  , = crossüower n n nj ^ 
between h   and h..    We have (1. 31, n j \       n 

E =v -E < sn -E GA +£ zX Vä 
n=l n~l n=l    j=l 

Now, in the single-mode crosspower formulas (2.10-2. 12), note that the 

only places wher» $ and K occur are outside the summations as multi- 

plicative factors. 
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We may therefore write 

V= |K|   $-a(f,k), 

N 

^ Gn Sn = iK$ *b<f'k^ and 

n=l 

N       N 

n=l    j=l 

(4.1) 

where the ftinctions a,  b,  and c are independent of f and K.    (a, b, and c 

do depend upon the array geometry and upon the filters G , but these are 
n 

regarded as fixed.)   It may be shown that a and c are real and non- 

negative, and a ^ 1; b may be complex, but b is real if the filters G   are. 
n 

Substituting (4. 1) into (1.3), we find 

E = $ •   [a • |K|2 - ibK + ib*K* +   ;1 

|2 
= a • IKH- i- i 

ik 
2 + -L 

K 

(4.2) 

_ci m 

Hence the interpolation error I. E.  = E/V'is 

I.E.  = 
b_ 
a 

1 
iK 

Ki 
a 

. M2 
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Let us define the total error (T. E.) for our processor to be 

T.E.  - E/(autopower of a single vertical seismometer) 

= E/|K|
2

§ =a- (I.E.) 

Then, by (4.3), 

T.E.  = a 1 -^- 1 
iK 

\KI' 

(4.4) 

The total error T.E. ie a better measure than I.E.  of how 

well our processor is succeeding in removing surface-wave noise from a 

vertical P-wave trace, since T.E. takes into account the fact that some 

noise reduction is effected by ^ renumber aliasing between the seismometers 

in the vertical ring v.    If the vertical ring has radius zero and contains only 

one seismometer, then T.E.   =1. E. 

B.    GRAPHICAL REPRESENTATION OF ARRAY RESPONSE 

In the study of vertical arrays it has been found useful to 

represent array response graphically by contouring the power response 

of the array in the kx-ky plane for selected fixed frequencies (see, for 

example. Burg,  1964, pp. 710-712).* A similar method for graphical 

representation of the response of horizontal-vertical interpolation arrays 

will be described in this eubsection. 

Now, the response of a vertical array to a wave propagating 

across the surface depends upon frequency, wavenumber, and direction. 

However, the response of a horizontal-vertical interpolation array depends 

upon yet another variable:   the horizontal-vertical transfer function K. 

The term "vertical array" is used here to describe a planar array 
with only vertical-component seismometers. 
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It is convenient to simplify the problem by eliminating at least one of the 

four variables; as we have done throughout this report, we will eliminate 

the parameter of direction by assuming isotropy.   Probably not much is 

lost by this simplification since, for wavenumbers small enough to make 

good interpolation feasible, directional effects are probably negligible 

(seei Section III). 

In the usual situation the filters G   will be real (see Section 

IID), and hence the functions a(f,k). b(f,k), and c{f,k) will be real also; 

and for our isotropic single-mode Rayleigh wave noise field ($, K, k), 

K will be purely imaginary.   If we let H = 1/iK, then H is real, and equations 
(4. 3) and (4. 4) simplify to 

,.B.=l-f-H+f HZ and ^ 

T. E. = a - 2bH + cH2 

That is, if we hold f and k fixed and let H vary from -»  to 
2 

+ », I.E. describes a parabola with a minimum value of 1 -  -k--    attained 
..    b 2K ac 

when H =— .   If H = 0 or H =-^., then I. E.  = 1.   Similarly, T. E. 

describes a parabola with a minimum value of a ~ , attained when 
c 

H = b/c.   If H = - ± —   / b  -ac + c , then T. E. = 1. 

Now,  select a set of frequencies f , j = 1,2     For each 
J 

fixed frequency f , plot the curves (1) H = 0,  (2) H = b/c,  (3) H = — , 
j ' c 

(4)H.t+i-    yb2-ac+c     .and(5)H = S_.l.     JJ^TT    in 
c c 

the H-k plane (see Figure 4. 1).    For points (H,k) lying between curves (1) 

and (3), I.E. < 1; for all other points. I.E.  i 1.   Similarly, for all points 

lying between curves (4) and (5), T.E. s 1; for all other points,  T.E.  a i. 
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Two possible refimimenta to the above might be a) writing 

down the value of T.E.  or I.E. at selected points along the curve (2) of 

minima, or b) contouring either T,E.  or I.E. in the H-k plane, using 

either a linear or logarithmic scale for the contour intervals. 

H 

Figure 4.1.    Graphical Representation of Array Response 
for Fxxed Frequency f. (Sketch) 

C    RESPONSE OF ARRAY TO NON-VERTICAL P-WAVES 

If an emergent P-wave is not vertical, then our interpolation 

processor will distort the signal to a certain extent.   Exactly to what extent 

the detectability of P will be affected is related to the quantity E/Q. where 

E is the autopower of the output (due to the P-wave) of the interpolation 

processor, and Q is the autopower of the output (due to the P-wave) of a 

single vertical seismometer.    E/Q is what we have previously called the 

total error, and we shall continue to call it by that name, although it is 

now somewhat misleading to do so since in the present context it is de- 

sirable for T.E.  = E/Q to be large rather than small.    For a vertical 
P-wave,  T.E.  =1. 
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Suppose that we have P-waves whose apparent angle of 

emergence deviates from the vertical by an angle 9.   As usual, assume 

ttiat the energy is isotropic with respect to horizontal azimuth and un- 

correlated from direction to direction.    Let k0(f) be the inline wavenumber 

of the P-waves.    Then there is an apparent horizontal wavenumber, which 

is approximately given by (4# 7J 

k = k sinS 
0 

and an apparent horizontal-vertical transfer junction K = cot8.   Now assume 

that the filters Gn are real,  so that a(f,k), b(f,k), and cff.k) are all real, 

where k is given by (4. 7).    Since K is also real,  eq. (4.4) reduces to 

T.E.  =a+-%-=a+c tan2e 

(4.8) 

Note that if the vertical ring v has radius 0 and contains only seismometer, 

then a = 1 and hence 4. 8 becomes 

(4.9) 
2 

T.E.  = 1 + c tan 9, 

showing that in this case, the vertical amplitude of incident P-waves is 

always increased by using the interpolation processor. 

For fixed frequencies, it would be possible to plot T. E. 

as a junction of 9 and k^ using (4. 8). Although a detailed investigation 

has not been made, it appears that even for a multi-element vertical ring, 

small deviations from the vertical angle of emergence will not significant- 

ly affect P-wave signal amplitudes. 
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SECTION V 

NUMERICAL CALCULATIONS 

In order to check the theory presented in the preceding 

sections on concrete examples, a Fortran program for use on the IBM 

7044 has been written which (1) accepts as inputs a) the goometrical 

parameters describing a specific horizontal-vertical prediction array 

and b) the modal parameters $p, KP, kP for a specific assumed multi- 

mode surface wave noise field, (2) calculates V   , S      , and C     according 
m      nm nj a 

to (2. 14-2. 16), (3) calculates the optimum interpolation filters G 
jm 

according to (2.17), and (4) calculates the optimum interpolation error 

and total error according to (2. 20).    Provision is made in the program for 

adding a given fraction e cf random noise to the predicting channels 

hj,  ... ,hN, as follows: we simply replace the matrix (C   .) in (2. 17) by the 

matrix (D  .) defined by 

(D  .)   =   (C   .)   +   \I nj nj 

where 
C,, + C„ + ...+ C     T i „ - U     • 22 NN 

A - e   .   —  and 

I - the ident-ty matrix.    All computations have used the three values 

e = 0, G = 0.01, and e = 0. 10   meaning, respectively, no uncorrelated 

noise,  1 percent uncorrelated noise, and 10 percent uncorrelated noise 

on the predicting channels. 

In order to obtain fairly realistic examples of noise fields, 

we have used the first 3 theoretically computed noise modes for a 12 layer 
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theoretical ÜBO model (T.I. Array Research Semiannual Report No.  2. 

IV1-34). The horizontal and vertical amplitude functions UP and VP, 

P = 1,2P3 for the first three modes are shown in Figures (5.1-5.3) 

KP in equal to vP/iüP. and $P is equal to (UV.   The dispersion curves 
for modes 1-3 are shown in Figure (5 4). 

In Figure 5. 2, notice that the horizontal amplitude for 

™de 2 vanishes at a frequency of about 0. 5 cps.   At this frequency,, 

no estimation of a vertical component from horizontal components is 

possible for mode 2.    Hence by eq.  (4. 5). the interpolation error equals 1 

for a noise field consisting solely of mode 2.    However, by properly 

choosing the radius d for a vertical ring v. we can make the total error 

small, as shown by eq.  (4.6).    For in eq.  (4.6),  T.E. = a(f.k) for H = O. 

and for the proper choice of d. a(f,k) can be made vory small for the 

frequency 1. 05 cps.    The correct choice for d turns out to be approximately 
0. 892 km. 

Four cases have been computed.    The assumed isotropic 
noise fields for the four cases were: 

CASE A:   Modes land 2.   Frequency range: 0. 05-2 cpc 

CASE B:   Modes 1 and 2.   Frequency range: 0. 5-1. 5 cps 

CASE C:  Modes 1 and 2.    The horizontal and vertical 
amplitudes of mode 2 were multiplied by 7, 
soas to make the vertical amplitudes of the 
1     and 2nd modes approximately equal at 1 cps. 

Frequency range :  0.05-2cp8. 

CASE D:  Modes 1,2, and 3.    Horizontal and vertical 
amplitudes for mode 2 were again multiplied 
by 7, and horizontal and vertical  amplitudes for 
mode 3 were multiplied by 10.   Frequency range: 
0. 5-1. 5 cps. 
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PHASE VELOCTIY 

— — — GROUP VELOCITY 

0.5 1.0 

FREQUENCY (CPS) 

1.5 2.0 

Figure 5.4.   Dispersion Curves for Modes 1 through 3 
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The assumed array geometries for each case were: 

CASE A:   One vertical ring, radius *■- 0. 892 km. 
Two horizontal rings,  radii = 0. 5 and 0. 25 
km.    Six seismometers in each ring. 

CASE B:   One vertical ring, radius = 0.0, containing 
one seismometer.    One horizontal ring, 
radius = Or 5 km, containing six seismometers. 

CASE C:   Same as Case A. 

CAS.H D:   One vertical ring, radius = o. 892 km. Three 
horizontal ringn, radii = 0. 5, 0.4, and 0. 25 km. 
Six seismometers in each ring. 

All rotation angles were zero for the cases considered. 

In Figures 5.5-5. 12, the computed interpolation filters, 

interpolation er:ror, and total error are shown for these four cases, for 

an assumed 1 percent uncorrelated noise on the predicting channels. 

In Cases A and B the first mode is much larger than the 

second mode,  so that we almost have a single-mode noise field.   However 

Figures 5. 6 and 5. 8 show that we still obtain much better performance by 

using 2 rings of horizontals and a ring of verticals than can be obtained by 

using a single ring of norizontals and a single central vertical. 

In the true multimode cases C and D we have not obtained 

good performance for frequencies less than 0. 8 cps, probably because for 

those frequencies the wavenumbers are small enough to make some of the 

horizontal ring crosspower spectra almost as small as oux- assumed 

random noise level.    (By equation (3. 9), the horizontal ring crosspower 

spectra approach zero as k approaches zero.)   However, for frequencies 

greater than 0. 8 cps, useful results are obtained.   It may b« that by 

varying the array geometries one may broaden the band o£ frequencies 

over which good interpolation is possible.   Further study is indicated. 
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Figure 5.7.    Computed Interpolation Filter for Case B ^Modes 1 and 2, 
1 Percent Uncorrelated Noise on Horizontal Ring) 
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Figure 5.8.   Interpolation Error (Equals Total Error) 
for Case B 
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1.0 

FREQUENCY (CPS) 

Figure 5. 11.    Computed Interpolation Filters for Case D ( 1.xMode 1, 
7 x Mode 2,   10 x Mode 3,  1 Percent Uncorrelated Noise 
on Horizontal Rings) 
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— PREDICTION ERROR 

— TOTAL ERROR 

FREQUENCY (CPS) 

Figure 5.12.   Interpolation Error and Total Error for Case D 
■  . - 
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SECTION VI 

CONCLUSION 

The results of this study point toward important future 

applications of horizontal-vertical interpolation arrays in the fields 

of teleseismic signal detection and oil exploration.   Even in multimode 

isotropic Rayleigh waves, horizontal-vertical interpolation arrays 

have the theoretical capability of canceling almost all surface wave noise 

on a vertical trace   while passing a vertical P-wave without distortion. 

In Section IV, we saw that good performance may be expected even if the 

P-wave is not quite vertical. 

Additional study is required of the problem   of optimizing 

array geometry.    It appears that the overall dimensions of horizontal- 

vertical prediction arrays will in general be smaller than for vertical 

arrays with the same number of instruments (all of the arrays considered 

in Section V were less than 2 km in greatest dimension).   In fact, were 

it not for the necessity of assuming the presence of uncorrelated noise 

on the predicting channels, eqs. (3. 18) show that the best performance 

would be approached as the radii of the horizontal rings approach zero. 

The question of how best to choose the ring radii, however, has not 

been answered satisfactorily.    The same is true of the question of 

choosing the number of seismometers and rotation angles for each 

ring.   It is suggested that further studies be undertaken to determine 

array response for representative noise models,  such as those in 

Section V.    In order to aid in the understanding of the functioning of a 

given array, it ma/ be helpful to prepare array response plots of the 

type described in Section IV B. 
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Finally, we must observe that all of our work here has 

one important shortcomingj it is not based upon real data.   It is 

important now to precede from the theoretical stage of investigation 

to the experimental.   The crucial question is not how well horizontal- 

vertical interpolation arrays work on paper — it is how well they work 
in the field. 

51 

■ 

■ 

■ 

■■■ 

■   ■   ■ 

• 
■ <!^^^'     ..-**;''«M 

■ : 



SECTION VII 

REFERENCES 

1. Burg, John P. ,  1964,  Three-dimensional filtering with an array of 

seismometers: Geophysics, v. 29, p. 693-713, 
■.;■■■ 

2. Laster, Stanley J. and A. Frank Linville,  19«>6, Application of 

multichannel filtering to the separation of dispersive modes of 

propagation. Journal ol'Geophysical Research, v. 71, p.  1669-1701. 

3. Potter, Thomas F., and Robert B. Roden, 1965, Array Research 

Special Report No. 7: prepared by Texas Instruments for AFTAC, 

Contract AF 33(657)-12747. 

4. Array Research Semiannual Report No. 2,   1964: prepared by 

Texas Instruments Inc. for AFTAC,  contract AF 33(657)-12747. 

5. Watson, G.N.,   1944: Treatise on the Theory of Bessel Functions, 

Cambridge University Press. 

6. Webster, A.G.,   1955: Partial Differential Equations of Mathematical 

Physics, Dover Publications, Inc. 

. 

•    ■ 

52 
■ 


